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Option 1: Vectors
1 Three planes P, Q and R have the following equations.

Plane P: 8x— y—14z=20
Plane Q: 6x+2y— 5z=126
Plane R: 2x+ y— z=40

The line of intersection of the planes P and Q is K.
The line of intersection of the planes P and R is L.

(i) Show that K and L are parallel lines, and find the shortest distance between them. [9]
(ii) Show that the shortest distance between the line K and the plane R is 56. [3]
The line M has equation r = (i — 4j) + A(5i — 4j + 3k).

(iii) Show that the lines K and M intersect, and find the coordinates of the point of intersection.

[7]

(iv) Find the shortest distance between the lines L and M. [5]

Option 2: Multi-variable calculus
2 Asurface has equation z = xy> — 4x%y — 2x* + 27x> — 36x + 20.

N
(i) Find » and 3 [3]

(i) Find the coordinates of the four stationary points on the surface, showing that one of them is
(2,4,8). [8]

(iii) Sketch, on separate diagrams, the sections of the surface defined by x = 2 and by y = 4.
Indicate the point (2,4, 8) on these sections, and deduce that it is neither a maximum nor a
minimum. (6]

(iv) Show that there are just two points on the surface where the normal line is parallel to the
vector 36i + k, and find the coordinates of these points. [7]
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Option 3: Differential geometry

3  The curve C has equation y = %xz — %ln x,and a is a constant with a = 1.

(i) Show that the length of the arc of C for which 1 < x < ais ya®>+ zIna — 5. [5]
(ii) Find the area of the surface generated when the arc of C for which 1 < x < 4 is rotated
through 27 radians about the y-axis. [5]

(iii) Show that the radius of curvature of C at the point where x = a is a(a + 4—161)2. [5]
(iv) Find the centre of curvature corresponding to the point (l,%) on C. [5]

C is one member of the family of curves defined by y = px?> — p*Inx, where p is a parameter.

(v) Find the envelope of this family of curves. [4]

[Questions 4 and 5 are printed overleaf.]
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Option 4: Groups

4 (i) Prove that, for a group of order 10, every proper subgroup must be cyclic. (4]

The set M = {1,2,3,4,5,6,7,8,9,10} is a group under the binary operation of multiplication

modulo 11.
(ii) Show that M is cyclic. [4]
(iii) List all the proper subgroups of M. [3]

The group P of symmetries of a regular pentagon consists of 10 transformations
{A,B,C,D,E,F,G,H,1,J}

and the binary operation is composition of transformations. The composition table for P is given
below.
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One of these transformations is the identity transformation, some are rotations and the rest are
reflections.

(iv) Identify which transformation is the identity, which are rotations and which are reflections.

(4]

(v) State, giving a reason, whether P is isomorphic to M. [2]
(vi) Find the order of each element of P. [3]
(vii) List all the proper subgroups of P. [4]
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Option 5: Markov chains

S A computer is programmed to generate a sequence of letters. The process is represented by a
Markov chain with four states, as follows.

The first letter is A, B, C or D, with probabilities 0.4, 0.3, 0.2 and 0.1 respectively.
After A, the next letter is either C or D, with probabilities 0.8 and 0.2 respectively.
After B, the next letter is either C or D, with probabilities 0.1 and 0.9 respectively.
After C, the next letter is either A or B, with probabilities 0.4 and 0.6 respectively.

After D, the next letter is either A or B, with probabilities 0.3 and 0.7 respectively.

(i) Write down the transition matrix P. [2]
(ii) Use your calculator to find P* and P”. (Give elements correct to 4 decimal places.) [4]
(iii) Find the probability that the 8th letter is C. 2]
(iv) Find the probability that the 12th letter is the same as the 8th letter. [4]

(v) By investigating the behaviour of P" when n is large, find the probability that the (n + 1)th
letter is A when

(A) nis alarge even number,

(B) n is a large odd number. [4]

The program is now changed. The initial probabilities and the transition probabilities are the same
as before, except for the following.

After D, the next letter is A, B or D, with probabilities 0.3, 0.6 and 0.1 respectively.
(vi) Write down the new transition matrix Q. [1]

(vii) Verify that Q" approaches a limit as n becomes large, and hence write down the equilibrium
probabilities for A, B, C and D. [4]

(viii) When n is large, find the probability that the (n+ 1)th, (n +2)th and (n + 3)th letters are
DDD. [3]
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